TABLE 1: TRP targeting molecules

Category	Description	Example assets
Small molecule	 Lower affinity for target and greater possibility of off-target effects Easy to manufacture Good tumor penetration Effective despite lower radionuclide to target ratios Rapid pharmacokinetics accommodates a broader range of radionuclides Generally easiest to penetrate the blood brain barrier (BBB) 	 [68Ga] FAPI-46 PET Detectnet Technetium Tc-99m tilmanocept
Peptide	 High affinity for target Good tumor penetration Flexible design, highly tunable pharmacokinetics Typically require transport mechanisms to cross BBB 	PluvictoLutatheraRYZ101
(Mini) antibody, antibody fragments	 High affinity for target Potential for multiple chelators (and radionuclides) per targeting agent Slower pharmacokinetics can impact radionuclide considerations Typically require transport mechanisms to cross BBB 	• TLX591 • Iomab-B

TABLE 2:

Radionuclides

Particle type	Description	Example radionuclide
Alpha (α)	 Greater potency; more likely to cause double-stranded DNA breaks 	• Actinium-225 (Ac-225)
	 Shorter penetration distance, potentially requiring more homogeneous antigen expression 	
	Used almost exclusively in therapeutics	
Beta (β)	Moderate penetration ability and ionization power; more likely to cause single-stranded DNA breaks	• Lutetium-177 (Lu-177)
	 Larger penetration distance, permitting more heterogeneous antigen expression 	
	Used primarily in therapeutics	
Gamma (y)	High affinity for target	• TLX591
	 Potential for multiple chelators (and radionuclides) per targeting agent 	• Iomab-B
	 Slower pharmacokinetics can impact radionuclide considerations 	
	 Typically require transport mechanisms to cross BBB 	